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Abstract  
Maybe the first inverse problem presented in the history of the occidental thought is described in the 
book Republic, written by Plato. The problem is posed in the Book VII in a text known as the Allegory 
of the Cave. That text motivated us to formulate a simple mathematical model that simulates, in a 
sense, the situation of the persons described in that problem. 
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1. Introduction 
 

The motivation of this paper is a problem posed more than 2000 years ago by Plato. 
Nevertheless the essence of that problem is one of the most challenging questions to be found in 
modern science and technology. Plato in the Book VII of his monumental masterpiece Republic, wrote 
a dialogue known as the Allegory of the Cave (see PLATO, circa 385 BCE). That text is maybe the 
first inverse problem presented in the history of the occidental thought. Briefly, several persons, 
sitting, facing the rear wall of a cave were totally immobilized even unable to move their heads. A fire 
was set between the persons and the wall. A procession of men and women of all ages and animals 
carrying, pulling and pushing all kind of objects moved between the wall and the fire. The persons tied 
on the chairs were able only to watch the images projected on the wall but could not see the parade 
directly. The challenge was to interpret the images and find out what kind of persons, animals and 
objects composed the parade. Plato explored through this allegory the knowing process and how to 
reach the truth. Despite the fact that his aim was distinct he presented maybe for the first time in a well 
organized structure an inverse problem, specifically, pattern recognition. The Allegory of the Cave is 
one of the most marvelous texts ever produced by the human mind. 

Plato’s text motivated the design of the kit presented in the sequel that simulates in a 
simplified version the images observed by the persons tied to the chairs in Plato’s story. The first part 
of this paper will describe the direct problem and the last section will deal with a particular inverse 
problem. 

Nowadays one of the most important challenges that falls into this category is the pattern 
recognition problem. There are several applications in medical diagnosis through the interpretation of 
images obtained with sophisticated equipments as computerized tomography and nuclear magnetic 
resonance devices. The question is: given the pattern what is the tissue density and distribution in the 
organ under examination. 

The problem posed here is essentially the same except that the number of parameters involved 
is substantially smaller. If we know how to solve the direct problem the solution of the corresponding 
inverse problem can be substantially facilitated. For the reader interested in more information on 
inverse problems see TARANTOLA, 2005. 
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2. The Problem 
 

A slender object with the shape of a thin plate B rotates with angular velocity Ώ around an axis 
O perpendicular to a plane containing the object. Such an object is confined inside a box C such that 
the slot F and the object belong to the same plane. 

A device inside the box, consists of a lamp and a concave mirror which projects the profile of 
the plate B on a moving screen E. This projection produces a shadow with height H equal to the 
distance between the upper and lower tangents to the contour of the plate B. 

If the film is sensitive to light, and unwinds in front of the slot with velocity v at the same time 
that the plate rotates around O, an image which is in a certain way a ”picture of B” will be generated. 

 

 
Figure 1: Building setup: object and projection system 

 

 
Figure 2: Image of the object B recorded on the film 

 
The image printed on the tape is a continuous picture with the shape of a ribbon with variable 

width, we will call it “kinematic image” of B. 
The picture is bounded above and below by ( )zYs  and ( )zYi , respectively. The width is given 

by ( ) ( ) ( )zYzYzH is −= . 

The following problems arise: 
 

i) Given the geometry of B, the angular velocity ( )tΩ and the travelling velocity ( )tv  

find ( ) ( )zHtzH 00, =  after a given time 0t . 

ii) Given ( )zYs , ( )zYi  and ( )zH 0  find the geometry of B. Is the solution unique? 

 
The first problem is known as a “direct problem” and the second one is an “inverse problem”. 
 
Observations: 
 
1. The projection ( )zH 0  do not identify reentrancies. In other words, it is a critical condition 

the contour to be convex in order to have an unique solution. 
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Figure 3: Non-convex contours 

 
2. Another difficulty is the existence of vertices on the contour. These singularities could be 

overcome, but they will need special treatment since at the vertices there is not a definite 
tangent. We will see that for the case of regular polygons it is possible to determine a simple 
solution. 

 
Figure 4: Contour with vertices: tangents not well-defined 

 
3. Formulation of the direct problem  
 

Consider a flat object B with a smooth contour. Let the contour, be defined in terms of polar 
coordinates (β, r(β)) having as a reference Qxy fixed in B. The object B moves with respect to OXY 
rotating around a perpendicular axis to its plane, going through the point O fixed in OXY, with angular 
velocity ( ) dtdt /' θθ = , where θ(t) is the angle between a line Qx fixed in B and a line OX fixed at 
the inertial reference system. 

 

 
Figure 5: Contour and tangent representation 

 
Our propose is to find the shadow of B projected on the rotating tape, that is, the distance 

( )tzH ,  between the upper and lower tangents. 

Let ( )βr
r

be the position vector of an arbitrary point M at the contour of B. We are admiting a 
smooth contour, that is, without corners. The general expression of the tangent related to the contour 
of B is: 

βd

rd
t

r
r

= . 
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Figure 6: Limits Ys and Yi of the projection and height H 

 
Clearly the upper and lower tangents are paralell to the horizontal axis OX. This is equivalent 

to say that both are orthogonal do OY . Therefore we may write: 
 

0=⋅ jt
rr

         (3.1) 
 

where j
r

 is the unitary vector corresponding to the axis OY . 

The representation of  t
r

  in  OXY is given by tRT
r

=  in which the rotation matrix is: 
 








 −
=

θθ
θθ

cossin

sincos
R  

 
The condition (3.1) can therefore be written as: 
 

0=⋅ jtR
rr

     (3.2) 
 
If the contour is smooth and convex there will be two solutions for this equation 

corresponding to the upper and lower tangents. This expression relates β and θ in such a way that with 
this relationship β will always define the same position of the extreme tangents. We will designate this 
position β(θ) = β* . 

In general there is not an explicit form β(θ), and hence, β*  has to be determined from the 
numerical solutions of (3.2). In the next sections we will to study some special cases where it is 
possible to obtain β*  explicitly. 

Once we determine*β , or *
uβ  and *

lβ  corresponding to the upper and lower tangents it is 

possible to find sY  and iY : 

( )
( ) .,

,,
*

*

jRjRY

jRjRY

jli

uus
rrrr

rrrr

⋅=⋅=

⋅=⋅=

θβ
θβ

 

 

where uR
r

 and lR
r

are position vectors defining the tangent points M and N on the contour 

corresponding to the upper and lower tangents represented in OXY, that is: 
 

( )( )
( )( ).

,
*

0

*
0

ll

uu

rrRR

rrRR

β
β

rrr

rrr

+=

+=
 

 
Now, 

( ) ( )( )[ ] ,** jrrRYYH ssis

rrr ⋅−=−= ββ  
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that is, the total height of the shadow does not depend upon the pole of rotation O. 
 
Example: The figure 7 shows two projections of the same circle with different poles. 
It is now necessary to find the image printed on the moving film that travels in front of the 

small hole with velocity ( )tv . 
Consider the axis O′Z on the film, orthogonal to the OXY plane. Let O′ be the origin of the Z 

axis. Clearly the figure printed on the film, that is, the kinematic image of B. 
 

 
Figure 7: Image of a circle. Rotation around the center and around a point on the contour. 
 
 will be comprised between sY  and iY , corresponding to the points where the upper and lower 

tangents intercept the tape. 
 
The projection sY  on the film varies with time as: 

( )( )[ ] ( )( )[ ]
dt

d
jrrRjrrR

dt

d

dt

dY
uu

s θβ
θ

β
rrrrrr ⋅+

∂
∂=⋅+= *

0
*

0 . 

 
On the other hand the film moves with speed v , therefore 
 

( )tv
dt

dz = . 

 
The solution of the system 
 

( )( )[ ]
( )tv

dt

dz

jrrR
dt

d

dt

dY
u

s

=

⋅+= ,*
0

rrr β
                                           (3.3) 

 
gives ( )zYY ss = . Similarly we would obtain ( )zYY ii = . 

Note that the solution of the equation (3.3) has two non-coincident roots if, and only if, the 
object B is convex and its contour is a smooth curve. 

 
Figure 8: Non-convex contour with more than two tangents 



A Mathematical Approach to the Plato’s Problem 7 

4. The case of the circle - Let a circle of radius a rotates around the centre O. 

 
Figure 9: Image of a circle rotating around the center 

 
The solution is trivial. The kinematic image is a strip with width equal a2 , bounded by 

aYs =  and aYi −= . Formally: 

 

,
cos

sin
,

sin

cos







−
=








=

β
β

β
β

tar
rr

 

 
( )

( ) 







+
+−

=






−
⋅






 −
=

βθ
βθ

β
β

θθ
θθ

cos

sin

cos

sin

cossin

sincos
tR
r

. 

 

The condition (3.2) 0=⋅ jtR
rr

 implies that ( ) 0cos =+ βθ , that is, 
 

( ) .2,1,
2

12 =−=+ nn
πβθ  

 
So, we have two different solutions: 
 

.
2

3

,
2

θπβ

θπβ

−=

−=

i

s

 

Suppose that the disc with radius a rotates with constant angular velocity θ = ωt. Therefore it 
is possible to write: 

.
2

3

,
2

t

t

i

s

ωπβ

ωπβ

−=

−=
 

 
Now, the general expression of the position vector on OXY is 
 

( )
( ) .

sin

cos

sin

cos

cossin

sincos









+
+

=







⋅







 −
=

βθ
βθ

β
β

θθ
θθ

aaR
r

 

 
It follows that, 
 

( ) ( ).sin sss ajRY βθβ +=⋅=
rr
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Since θπβ −=
2s  it comes: 

aaYs ==
2

sin
π

. 

 
Similarly, aYi −=  and aYYH ii 2=−= . 

 
A more interesting case arises when the disc rotates around a point that does not coincides 

with the center. Take the case of a disc rotating around a fixed point on the contour: 
 

 

,
0

1








=r

r  

( ) tt ωθ =
 

 

 
Figure 10: A circle rotating around a point of the contour 

 
There is no loss of generality if we take the x axis fixed on the disc through the rotation center. 

Following the reasoning exposed above, we have successively: 

,
cos

sin
,

sin

cos







 −
=








=

β
β

β
β

tar
rr  

 
( )
( ) 







+
+

=
βθ
βθ

cos

sin-
tR
r

. 

 

The condition (3.2), 0=⋅ jtR
rr

 implies that 
 

.
2

3

,
2

θπβ

θπβ

−=

−=

i

s

 

 
The general expression of the position vector on OXY is 
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( ) .
sin

cos

0

1

cossin

sincos
0 


















+















 −
=+=

β
β

θθ
θθ

aarrRR
rrr

 

 
Its projection on the Y axis is 
 

( )[ ] YajR =++=⋅ βθθ sinsin
rr

. 
 
Substituting β by βs and βi we find 

 
( ) ( )[ ],1sin +== θβ aYY ss  

( ) ( )[ ]1sin −== θβ aYY ii  

 
and aYYH ii 2=−= . 

The printed image over the film that winds down in front of the slot with velocity 0vv =  

=constant is obtained from the system 
  

( )

0

,coscos

v
dt

dz

taa
dt

dY
dt
ds

=

== ωωθ θ

 

       
Using the conditions ( ) aYs =0  and ( ) 00 =z , the solutions of the equations above are: 

 
( )( )taYs ωsin1 += , 

tvz 0= . 

 
Solving this system, by elimination of the variable t we obtain: 
 






















+= z

v
aYs

0

sin1
ω

. 

Similarly we also obtain: 






















+−=−= z

v
aHYY si

0

sin1
ω

. 

 
Figure 11: Kinematic image of a circle rotating around a point on the contour 

 
The kinematic image has the shape of a wave (see figure 11). 
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5. The case of the elipse 
 

Consider the position vector of an arbitrary point on the contour of an elipse centered in the 
origin of a system OXY  with semi-axis ba > : 

 









=

β
β

sin

cos

b

a
r
r

. 

 
Its tangent vector is given by: 








−
=

β
β

cos

sin

b

a
t
r

. 

 
The rotation of tangent vector by an angle θ is: 
 










+−
−−

=
βθβθ
βθβθ

coscossinsin

cossinsincos

ba

ba
tR
r

. 

 
The tangency condition leads to 
 

βθβθ coscossinsin ba = .          (5.1) 

 
The general expression of the position vector referred to OXY is 
 










+
−

=














 −
=

βθβθ
βθβθ

β
β

θθ
θθ

sincoscossin

sinsincoscos

sin

cos

cossin

sincos

ba

ba

b

a
R
r

. 

 
and its projection on the axis OY is 
 

βθβθ sincoscossin bajRY +=⋅=
rr

.       (5.2) 
 
Rather than try to write β as a function of θ let explore useful relationships between (5.1) and 

(5.2). In fact, squaring (5.2) we have 
 

βθβθβθβθ sincoscossin2sincoscossin 2222222 abbaY ++= . 
 
Using the tangency condition we obtain successively 
 

βθβθβθ 2222222222
, sinsin2sincoscossin abaY is ++=  

βθβθθ ²sin²sin²²sin²cos²²sin² aba ++= , 
 

that is, 
 

( ) βθθθ ²sin²cos²²sin²²sin²2
, baaY iS ++=  .        (5.3) 

 
Similarly we get: 

 

( ) βθθθ ²cos²cos²²sin²²cos²2
, babY iS ++=  .         (5.4) 
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Adding (5.3) and (5.4) we conclude that 

θθ ²cos²²sin²2
, baY iS += , 

 
which means that 

 

θθ ²cos²²sin² baYS += , 
(5.5) 

θθ ²cos²²sin² baYi +−=  

 
Since tωθ =  and tvz 0= , the printed image on the film is obtained from the equations: 









+







= z

v
bz

v
aYS

00

²cos²²sin²
ωω

 

(5.6) 









+







−= z

v
bz

v
aYi

00

²cos²²sin²
ωω

 

The figure 12 shows the printed image on a moving film of an elipse rotating around its center 
with constant velocity 0v : 

 

 
Figure 12: Kinematic image of an elipse rotating around its center 

 
6. The case of regular polygons 
 

The techniques presented in the section 3 cannot be applied to this case since we are dealing 
with plane figures with corners, non-smooth contour. We will see that for this case the profile 
projected on the moving screen is defined by the vertices or by the corresponding position vectors. 

For sake of simplicity let us call P
r

 the vector OP  where O is the origin of the coordinate 

system and P a general vertex of the polygon. Now given a vector [ ]TyxP ,=
r

, the Y-component after 
a rotation θ is given by: 

 
( ) θθθ cossin yxf

P
+=r . 

 
Let us call this function RotProj. Consider the polygon inscribed in a circle whose center 

coincides with the origin of the X − Y axis system. Assume that the polygon rotates around the point 
coinciding with the center of the circle with constant angular velocity ω and the film moves with 
constant velocity 0v . 

 
Case 1: the square. Let us consider a square with side equals a as shown in the figure 13. 
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Figure 13: Image of a square 

 
For θ = 0 the vertices are given by: 

( )
( )
( )
( )1,1

1,1

1,1

1,1

2

2

2

2

−=
−−=

−=
=

a

a

a

a

D

C

B

A

 

The corresponding functions RotProj read: 

( ) ( )
( ) ( )
( ) ( )
( ) ( )θθθ

θθθ
θθθ
θθθ

cossin

cossin

cossin

cossin

2

2

2

2

+−=

−−=

−=

+=

a
D

a
C

a
B

a
A

f

f

f

f

r

r

r

r

 

Now when the square rotates of an angle θ within the interval 2/0 πθ <≤ , the vertices 
defining the upper and bottom contours of the profile projected on the film are A and C respectively. 
The vertices B and D in that case are “hidden” (see figure 14).  

 
 
 
 
 
 
 
 
 
 
 

Figure 14: Successive positions of a rotating square 
 

The expressions for the upper and bottom contours are given by 
( ) ( )θθθ cossin2/ +== afY

AS
r  and si YY −=  respectively. 

For the case where θ belongs to the interval πθπ <≤2/ , the control vertices are D and B 
while A and C remain hidden. 

Following this procedure till the rotation completes a complete cycle (2π) the expression from 
the upper and bottom contours are given by: 
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( )
( )

( )
( )












<≤+−
<≤−−

<≤−
<≤+

=

πθπθθ
πθπθθ

πθπθθ
πθθθ

22/3cossin

,2/3cossin

,2/cossin

,2/0cossin

2

2

2

2

if

if

if

if

Y

a

a

a

a

S  

 
and si YY −= . 

The image projected on the film, that is, the kinematic image, is depicted in the figure 15. 
 

 
Figure 15: Kinematic image of a square rotating around its center with constant angular velocity. Film moving 

with constant speed 0vv =  

 
Case 2: The Equilateral Triangle - Consider now an equilateral triangle with side equal a as 

shown in the figure 16. 

 
Figure 16: Image of an equilateral triangle 

 
For θ = 0 the vertex coordinates are given by: 
 

( ),1,3
6

3a
A =    ( ),1,3

6

3 −= aB    ( ).1,0
3

3 −= a
C  

 
The corresponding projections are given by the functions: 
 

( ) ( )

( ) ( )

( ) .cos
3

3

,cossin3
6

3

,cossin3
6

3

θθ

θθθ

θθθ

a
f

a
f

a
f

C

B

A

−=

+−=

+=

r

r

r

 



Luiz Bevilácqua, Adilson J. V. Brandão and Rodney C. Bassanezi  14

 
When the triangle rotates of an angle θ comprised within the interval ,3/0 πθ ≤≤ the upper 

contour is determined by A
r

 and the bottom contour by C
r

 . In that case the vertex B is hidden (see 
figure 17). 

 

 
Figure 17: Sucessive images of an equilateral triangle rotanting around its center 

 
Therefore, within this angular interval the upper and bottom projections are given by 

( ) ( ),cossin3
6

3 θθθ +== a
fY

AS
r   and ( ) ,cos

3

3 θθ a
fY

Ci −== r  respectively. 

For the next interval 3/23/ πθπ ≤≤ the projection is controlled by A and B with C hidden. 
The table below shows the intervals composing a complete cycle ( π2 ), the correspond ing 

control vertices and the hidden vertex as well. 
 

Angular interval Upper control vertex Botton control vertex Hidden vertex 

3/0 πθ ≤≤  A C B 

3/23/ πθπ ≤≤  A B C 

πθπ ≤≤3/2  C B A 

3/4πθπ ≤≤  C A B 

3/53/4 πθπ ≤≤  B A C 

πθπ 23/5 ≤≤  B C A 

 
Using the table above the respective functions RotProj give the upper and the bottom contour 

curves. They are: 

( )

( )















≤≤+−

≤≤−

≤≤+

=

πθπθθ

πθπθ

πθθθ

23/4cossin3
6

3

3/43/2cos
3

3

,3/20cossin3
6

3

if
a

if

if
a

YS  

 
and 
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( )

( )



















≤≤

≤≤

≤≤

≤≤

−

+

+−

−

=

πθπ

πθπ

πθπ

πθ

θ

θθ

θθ

θ

23/5

,3/5

,3/

,3/0

cos
3

3

cossin3
6

3

cossin3
6

3

cos
3

3

if

if

if

if

a

a

a

a

Yi  

 
The image printed on the film is given by figure 18. 

 
Exercice: Find the shape of the kinematic image on the film of a regular polygon having n 

sides. What is the difference between the image of the polygons consisting of even and odd sizes? 
 

 
Figure 18: Kinematic image of an equilateral triangle rotanting around its center 

 
7. The inverse problem 
 

We have discussed the solution of the direct problem. That is, find the image of a bi-
dimensional rotating solid projected on a moving film. The general inverse problem is more complex 
and has yet to be solved for the general case. However, some conclusions taken from the direct 
problem can help the formulation of the inverse problem. An example is the case of regular polygons 
which was discussed in the previous section. 

Indeed, consider an image generated by the rotation of a regular polygon with constant angular 
velocity. Suppose also that the film moves with a constant speed. We want to know which polygon has 
generated that image. To solve this problem, suppose that the polygon rotates around its center of 
mass. If this centre is located at the origin of a system of Cartesian coordinates, then the shadow will 
be limited above and below by periodic curves. We can ensure, in advance, that if those curves are 
symmetrical with respect to the x axis then the polygon has a number of even sizes. If the curves are 
shifted, the polygon has an odd number of sides. To know the exact number of sides of the polygon it 
is enough to know the relationship between the values m, meaning the minimum distance from the 
superior curve to the x axis, and M, meaning the maximum distance from the superior curve to the x 
axis. The value of m is given by polygon’s apotema and M is the distance of the center to the vertex of 
the polygon (see figure 19). 
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Figure 19: Image of a regular polygon 

 

Clearly, 
n

πθ =  = arc cos 








M

m
where n is the number of edges of the regular polygon. Thus 

( )M
m

n
arccos

π=  

For instance, if we do not know in advance which the regular polygon generated the figure 15, 
by inspection of the image we may conclude immediately the regular polygon has a number of even 
sizes due the symmetry ot the upper and lower bounds. To find out the exact number of edges it is 

enough to calculate m and M. In fact, 2
am =  and 2

2aM = .  

Therefore, 
 

4

4arccos
2

2
2

==








= π

ππ

a

a
n  

that is, the polygon is a square. 

For the case of figure 19, 
6

3a
m =  and 

3

3a
M = . We conclude that n = 3 and the polygon 

is a equilateral triangle. 
Note that the smaller the difference ( )mM − , the greater the number of sides of the regular 

polygon. If Mm →  then 
 

( ) +∞=
→

M
mMm arccos

lim
π

 

 
that is, in the limit, we have a rotating circle. 

 

8. Final remarks  
 

We have discussed in this short paper a simple problem. We believe however that it clarifies 
and illustrates some basic questions arising in direct and inverse problems. It becomes very clear, for 
instance, why convexity of domains of definition are so important for the uniqueness of the solutions, 
particularly for the case of inverse problems. 

The kinematic image can also be used as a tool to stimulate the abstract representation of the 
shape of two-dimensional objects. In that sense it could be an interesting tool for educational purposes. 
Also more complex motion of the film and of the rotating object can be introduced. It is possible that 
the identification of intricate contours can take advantage of the comparison between two or more 
kinematic images corresponding to different motions. We believe that this problem is a starting point 
for several other setups including three-dimensional objects. 

Inspired in this article we did a demonstration which has been accepted for publication in the 
Wolfram Demonstrations Project site: 

http://demonstrations.wolfram.com/PlatosShadowProblem/ 
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