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Abstract

Maybe the first inverse problem presented in tistony of the occidental thought is described in the
bookRepubli¢ written by Plato. The problem is posed in the IBod in a text known as thallegory

of the Cave That text motivated us to formulate a simple raathtical model that simulates, in a
sense, the situation of the persons describedtrptioblem.
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1. Introduction

The motivation of this paper is a problem posed emtitan 2000 years ago by Plato.
Nevertheless the essence of that problem is ortbeoimost challenging questions to be found in
modern science and technology. Plato in the Bodlo¥/his monumental masterpieBepublic,wrote
a dialogue known as thallegory of the Cavésee PLATO, circa 385 BCE). That text is maybe the
first inverse problem presented in the history loé bccidental thought. Briefly, several persons,
sitting, facing the rear wall of a cave were tgtéathmobilized even unable to move their heads.ra fi
was set between the persons and the wall. A prioces$ men and women of all ages and animals
carrying, pulling and pushing all kind of objectswved between the wall and the fire. The persoms tie
on the chairs were able only to watch the imagegepred on the wall but could not see the parade
directly. The challenge was to interpret the imaged find out what kind of persons, animals and
objects composed the parade. Plato explored thrthighallegory the knowing process and how to
reach the truth. Despite the fact that his aim eiainct he presented maybe for the first time medl
organized structure an inverse problem, specificgiattern recognition. Thallegory of the Cavés
one of the most marvelous texts ever produced é¥ytiman mind.

Plato’s text motivated the design of the kit présdnin the sequel that simulates in a
simplified version the images observed by the persed to the chairs in Plato’s story. The firattp
of this paper will describe the direct problem dhd last section will deal with a particular invers
problem.

Nowadays one of the most important challenges fiii into this category is the pattern
recognition problem. There are several applicationmedical diagnosis through the interpretation of
images obtained with sophisticated equipments agpuaterized tomography and nuclear magnetic
resonance devices. The question is: given therpatikat is the tissue density and distributionha t
organ under examination.

The problem posed here is essentially the samepetttat the number of parameters involved
is substantially smaller. If we know how to solte direct problem the solution of the corresponding
inverse problem can be substantially facilitatedr Ehe reader interested in more information on
inverse problems see TARANTOLA, 2005.
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2. The Problem

A slender object with the shape of a thin pBitetates with angular velocit® around an axis
O perpendicular to a plane containing the objecthSan object is confined inside a bGxsuch that
the slotF and the object belong to the same plane.

A device inside the box, consists of a lamp andrecave mirror which projects the profile of
the plateB on a moving screek. This projection produces a shadow with heighequal to the
distance between the upper and lower tangent®todhtour of the platB.

If the film is sensitive to light, and unwinds iroft of the slot with velocity v at the same time
that the plate rotates arou@d an image which is in a certain way a "picturd8divill be generated.
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Figure 2: Image of the object B recorded on the film

The image printed on the tape is a continuous @attith the shape of a ribbon with variable
width, we will call it “kinematic image” oB.

The picture is bounded above and belovW@(/z) and; (z) respectively. The width is given
byH(2) =Y, (2)-Y,(2).
The following problems arise:

i) Given the geometry d8, the angular veIocit;Q(t) and the travelling velocitw(t)
find H (z,to) = Ho(z) after a given timd, .
i) Given Y (z) Y, (z) and Ho(z) find the geometry oB. Is the solution unique?

The first problem is known as a “direct problemtahe second one is an “inverse problem”.
Observations:

1. The projectiorHO(z) do not identify reentrancies. In other wordssiticritical condition
the contour to be convex in order to have an unsmplation.
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Figure 3: Non-convex contours

2. Another difficulty is the existence of vertices the contour. These singularities could be
overcome, but they will need special treatmentesiatcthe vertices there is not a definite
tangent. We will see that for the case of regutdygons it is possible to determine a simple
solution.

/@ Ce
Figure 4. Contour with vertices: tangents not well-defined

3. Formulation of the direct problem

Consider a flat objed® with a smooth contour. Let the contour, be defiimeterms of polar
coordinateq, r(f)) having as a referend@xy fixed in B. The objectB moves with respect tOXY
rotating around a perpendicular axis to its plgoeng through the poir® fixed in OXY, with angular
velocity 9'(t) =d@/dt, whered(t) is the angle between a lif@x fixed in B and a lineOX fixed at

the inertial reference system.

Figure 5: Contour and tangent representation

Our propose is to find the shadowBprojected on the rotating tape, that is, the dista
H (z,t) between the upper and lower tangents.
Let f(,B) be the position vector of an arbitrary pdihtat the contour dB. We are admiting a

smooth contour, that is, without corners. The galnexpression of the tangent related to the contour
of Bis:

. dr

t —

arri
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Figure 6: Limits Ys andY; of the projection and height

Clearly the upper and lower tangents are paralethé horizontal axi©X. This is equivalent
to say that both are orthogonal @ . Therefore we may write:

(j=0 (3.1)

where I is the unitary vector corresponding to the &5.

The representation of in OXYis given byT = Rt in which the rotation matrix is:

_|cosg -—sind
" |sind  cosd

The condition (3.1) can therefore be written as:

N

Rtj=0 (3.2)

If the contour is smooth and convex there will beo tsolutions for this equation
corresponding to the upper and lower tangents. @gsession relatggandé in such a way that with
this relationshigs will always define the same position of the extegiaingents. We will designate this

positiong(6) = p*.
In general there is not an explicit forf(d), and hencef* has to be determined from the
numerical solutions of (3.2). In the next sectiams will to study some special cases where it is

possible to obtaifi* explicitly.
Once we determing, or ,8; and ,8|* corresponding to the upper and lower tangents it i

possible to findY, andY, :
(5:.0)

o)
(6:.6)T =

where Iiu and ﬁ are position vectors defining the tangent poiktsand N on the contour
corresponding to the upper and lower tangents septed irOXY, that is:

II
pell

;Ui

1
;Ul A0
._Dl .Ell

Y,
Y =

R, =R, +r(8))
R =R +7(8))

Now,
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that is, the total height of the shadow does npedd upon the pole of rotatié

Example: The figure 7 shows two projections of the sameleiwith different poles.
It is now necessary to find the image printed oa itoving film that travels in front of the

small hole with velocityv(t).

Consider the axi®©'Z on the film, orthogonal to th@XY plane. LetO’ be the origin of th&
axis. Clearly the figure printed on the film, th&tthe kinematic image @.

Figure 7: Image of a circle. Rotation around the centeramdind a point on the contour.

will be comprised betweeM, andY,, corresponding to the points where the upper ane
tangents intercept the tape.

The projectionY, on the film varies with time as:

“ = SRl el )l = S Rl el )17

On the other hand the film moves with speedtherefore

dz _
s v(t).
The solution of the system
dy, _ adrof ol )\
Gt dt R(r0 +7 ([a’u )) 0 ] -
dz _ '
a (t)

givesY, = YS(Z). Similarly we would obtair¥; =, (z) .
Note that the solution of the equation (3.3) has hen-coincident roots if, and only if, the
object B is convex and its contour is a smooth eurv

g

1.

Figure 8: Non-convex contour with more than two tangents
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4. The case of the circle ket a circle of radius a rotates around the cedtre

¥

H] \ b
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/ Q 5§ 4

]\ B % _-" -
|
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Figure 9: Image of a circle rotating around the center

The solution is trivial. The kinematic image is tapwith width equal2a, bounded by
Y, =a andY;, = —a. Formally:

. a{cos ﬂ_,f _ {—sin ,8]

sin B | cos [

o)

The condition (3.2)Rt 0 =0 implies thatcos(é? + ,8) =0, that is,

- {cos@ —smﬂ 4 —smﬂ}

“|sing  coss | cosp

6?+/3:(2n—1)%,n:1,2.

So, we have two different solutions:

T
:_—9,
B >
3
 =—=0.
=5

Suppose that the disc with radasotates with constant angular velodity: wt. Therefore it
is possible to write:

T
=— -,
B >
3T
= ——ah
A==

Now, the general expression of the position veotoD XY is
5. [cos® —sind] [cosp]_ cos(8 + )
sin@ cos@ | |sing sin(6+ B) |
It follows that,

Y, =R(8,)d = asin(6+ B,).
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Since S, = g - @ it comes:

Tl
Y, :asmE:a.

Similarly, Y, =—a andH =Y, =Y, =2a.

A more interesting case arises when the disc tateund a point that does not coincides
with the center. Take the case of a disc rotatingrad a fixed point on the contour:

ot)= at
'y
SO
& %,

Figure 10 A circle rotating around a point of the contour

There is no loss of generality if we take #axis fixed on the disc through the rotation center
Following the reasoning exposed above, we havesssoely:

. a[C(_)S ,B]f _ [— sin ,8]
sin S cos S

)

The condition (3.2)Rt [j =0 implies that

|\>|gl° I\>|:I

B, =
B

The general expression of the position vectoOdtY is
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R=R(, +F)= cosd -sind| |1 N cosp
N T sing cosd || |0 sing |/

Its projection on th& axis is

— -

0j =a[sin@ +sin(@+ B)]=Y.
Substituting by ps andpi we find

Y, =Y(8,) = alsin(6) +1],
Y, =Y(8,) = a[sin(6) - 1]

andH =Y, -Y, =2a.
The printed image over the film that winds dowriromt of the slot with velocity = v,
=constant is obtained from the system

dd\:s = acosd 4 = acwcodat),

dw_,
dat °

Using the condition¥/ (O) =a and Z(O) =0, the solutions of the equations above are:

Y, = a(l+ sin (wt)),
Z=v,t.

Solving this system, by elimination of the variablge obtain:
Y, = a{1+ sin(ﬁ ZD :
VO
Similarly we also obtain:

Y =Y. —H = a(—1+ sin(ﬂzD.
VO

4Y
2a T -
o B 4 b
r- h ,/ N
| fese P ‘-.‘\ //
/'fa‘r\ b y \\
e " b
(D!'L; = - ~ A &
=
= | % .
- J ke
\I_/ // k- - \\
8 e b o
//l \-. ; £ \\
By foc s o o - !

Figure 11 Kinematic image of a circle rotating around arpain the contour

The kinematic image has the shape of a wave (gaeefill).
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5. The case of the elipse

Consider the position vector of an arbitrary paintthe contour of an elipse centered in the
origin of a systen®XY with semi-axisa > b:

. acosp
{bsinﬁ]

Fo|” asinf
_{bcosﬁ }

The rotation of tangent vector by an angie:

Its tangent vector is given by:

RF = —acosgsin B —bsinfcosf
—asindsin B +bcosdcosf |

The tangency condition leads to

asindsin 5 =bcosfcosp. (5.1)

The general expression of the position vector retetoOXY is

5 {cos@ —-sin H}{acosﬁ} _ {acos@ cosf - bsiné@sin ,8}

sind cos@ || bsing - asindcospf +bcosé@sin S

and its projection on the ax@Y is

-

Y = RO = asindcosB +bcosfsin . (5.2)

Rather than try to writg as a function of let explore useful relationships between (5.1) and
(5.2). In fact, squaring (5.2) we have

Y2 =a?sin’ 8cos B +b? cos @sin? 5 + 2absindcosB cosdsin 3.
Using the tangency condition we obtain successively

Y2 = a’sin® @cos’ B +b? cos’ Fsin® B+ 2a’ sin® sin’ B
= a2sin2@ + b?cos?dsin?S + a2sin2@sin?S ,

that is,
Y2, = a2sin26 + (a?sin28 + b2cos8)sin23 . (5.3)
Similarly we get:

Y2 =b2cos?d + (a2sin28 + b2cos?6)cos?3 . (54)
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Adding (5.3) and (5.4) we conclude that
Ye, = a2sin28 +b2cos?d,

which means that

Ys =+/a2sin28 +b2cosd,

(5.5)
Y, = —Ja?sin20 + b2cos?d
Sinced = at and z = v,t, the printed image on the film is obtained frora #guations:
Ys =.|@2sin? D7 l+p2cosd Lz
VO V0
(5.6)

Y, = —\/azsinz[ﬂ zj + bzcosz(ﬂ zj
VO VO

The figure 12 shows the printed image on a movilng éf an elipse rotating around its center
with constant velocityy, :

Figure 12 Kinematic image of an elipse rotating arounccéster

6. The case of regular polygons

The techniques presented in the section 3 cannappked to this case since we are dealing
with plane figures with corners, non-smooth contdife will see that for this case the profile
projected on the moving screen is defined by thidoes or by the corresponding position vectors.

For sake of simplicity let us caP the vectorOP whereO is the origin of the coordinate

system and P a general vertex of the polygon. Niwenga vectorP = [x, y]T , theY-component after
a rotationd is given by:

fﬁ(e) = Xxsingd+ycosq.
Let us call this functiorRotProj Consider the polygon inscribed in a circle whasater

coincides with the origin of th¥ — Y axis system. Assume that the polygon rotates ardg point
coinciding with the center of the circle with camst angular velocityo and the film moves with

constant velocityy, .

Case 1: the squarelet us consider a square with side eqaals shown in the figure 13.
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Figure 13: Image of a square

For & = 0 the vertices are given by:

A=4(11)
B=3(-11)
c=3(-1-1)
D =4(1-1)

The corresponding functiof®otPrg read:
f.(6)=2(sin@ +cosd)
f(6)=2(sin@ - cosd)
f.(6)=2(-sing-coss)
( )= %(—sin6’+ cosd)

Now when the square rotates of an angleithin the intervaD< 8 < 71/2, the vertices
defining the upper and bottom contours of the pggdrojected on the film ar& andC respectively.
The vertice8 andD in that case are “hidden” (see figure 14).

r -

¥
v
y

Figure 14 Successive positions of a rotating square

The expressions for the upper and bottom contourse agiven by
Ys = fA(H) = a/2(sing+cosh) andY, = -Y, respectively.

For the case wher belongs to the intervati /2 < 8 < n, the control vertices a® andB
while A andC remain hidden.

Following this procedure till the rotation complet® complete cyclef) the expression from
the upper and bottom contours are given by:
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a(sin@+cosf) f0<O<ml2,
a(sin@-cosf) ifmi2<8<m,
a(-sin@-cosf) ifmr<@<3ml2,
a(-sin@+cosf) if3mi2<6<2m

andY; =-Y,.
The image projected on the film, that is, the kia@mimage, is depicted in the figure 15.
-
az
a j .:-E
T |~ ]

Figure 15 Kinematic image of a square rotating arounddtster with constant angular velocity. Film moving
with constant speelf =V,

Case 2: The Equilateral Triangle -Consider now an equilateral triangle with side équas
shown in the figure 16.

Figure 16: Image of an equilateral triangle

For & = 0 the vertex coordinates are given by:

—ﬁ( 31 B=a (\/_1) C—i(O -1).

The corresponding projections are given by thetfans:

f (6)= a3 (\/_S|n6?+ cos@)

A

()= a\/_( \/_S|n0+cos€)

()= —%cos@
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When the triangle rotates of an angleomprised within the intervd) < 8 < 71/3,the upper

contour is determined b% and the bottom contour l:(;Z . In that case the vertex B is hidden (see
figure 17).

B C
C B

Figure 17: Sucessive images of an equilateral triangle totgraround its center

Therefore, within this angular interval the upperdabottom projections are given by

Y, = f.(6) :%{g(ﬁsin9+ cos@), andY, = f. (6)= —icosﬁ respectively.

A

For the next intervalz /3< @ < 271/3the projection is controlled by andB with C hidden.

The table below shows the intervals composing aptet® cycle @71), the correspond ing
control vertices and the hidden vertex as well.

Angular interval Upper control vertex Botton comtvertex Hidden vertex
0<6<nl3 A C B
nl3<6<2nl3 A B c
2nl3<6<n C B A
n<6<4n/3 C A B
4n/3<6<5nl3 B A C
5n/3<6<2n B c A

Using the table above the respective functiBogProjgive the upper and the bottom contour
curves. They are:

g/_(\/_sm6?+cosﬁ) if0<@<2m/3,
Y, = _fcosﬁ if 277/3<60<4m/3
a—g/g(—\@sin9+cosé?) it 4r/3< 6 < 21

and
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%0036 |f0£9£ﬂ'/3,

a3

5 (\/_Sln6?+c059) ifr/3<6 < m,

Yi

*/_(\/_smmcosg) ifr<8<5m/3,
a+/3

Tcos@ if 571/3< 8 <2

The image printed on the film is given by figure 18

Exercice Find the shape of the kinematic image on the fifha regular polygon having
sides. What is the difference between the imadbepolygons consisting of even and odd sizes?

v

Wz
~ PO~

Figure 18 Kinematic image of an equilateral triangle rotagtaround its center

7. The inverse problem

We have discussed the solution of the direct probl&hat is, find the image of a bi-
dimensional rotating solid projected on a movinmfiThe general inverse problem is more complex
and has yet to be solved for the general case. Hawasome conclusions taken from the direct
problem can help the formulation of the inversebfgm. An example is the case of regular polygons
which was discussed in the previous section.

Indeed, consider an image generated by the rotafiarregular polygon with constant angular
velocity. Suppose also that the film moves witloastant speed. We want to know which polygon has
generated that image. To solve this problem, supploat the polygon rotates around its center of
mass. If this centre is located at the origin afyatem of Cartesian coordinates, then the shaddw wi
be limited above and below by periodic curves. Vde ensure, in advance, that if those curves are
symmetrical with respect to the x axis then theygoh has a number of even sizes. If the curves are
shifted, the polygon has an odd number of sideskribov the exact number of sides of the polygon it
is enough to know the relationship between theesn meaning the minimum distance from the
superior curve to thg axis, andM, meaning the maximum distance from the superiovecto thex
axis. The value ofnis given by polygon’s apotema aktis the distance of the center to the vertex of
the polygon (see figure 19).
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Y\ m
\ /M

Figure 19: Image of a regular polygon

Clearly, 8 = L arc co{%} wheren is the number of edges of the regular polygon.sThu
n

71

= arcco@ )

For instance, if we do not know in advance whidhtdgular polygon generated the figure 15,
by inspection of the image we may conclude immedifaihe regular polygon has a number of even
sizes due the symmetry ot the upper and lower l®uhd find out the exact number of edges it is

enough to calculate andM. In fact, m=4 andM = a—f
Therefore,

that is, the polygon is a square.

a3 a3

For the case of figure 19n = ? andM = T . We conclude that = 3 and the polygon

is a equilateral triangle.
Note that the smaller the differen(:M - m), the greater the number of sides of the regular
polygon. If m - M then

. n
lim = +oo
m- M arccos (Mﬂ)
that is, in the limit, we have a rotating circle.

8. Final remarks

We have discussed in this short paper a simplelgmob/Ne believe however that it clarifies
and illustrates some basic questions arising iectliand inverse problems. It becomes very clear, fo
instance, why convexity of domains of definitiore &0 important for the uniqueness of the solutions,
particularly for the case of inverse problems.

The kinematic image can also be used as a todinmilate the abstract representation of the
shape of two-dimensional objects. In that senselitd be an interesting tool for educational pugsos
Also more complex motion of the film and of theating object can be introduced. It is possible that
the identification of intricate contours can taldvantage of the comparison between two or more
kinematic images corresponding to different motiohe believe that this problem is a starting point
for several other setups including three-dimengiobgects.

Inspired in this article we did a demonstration ebhhas been accepted for publication in the
Wolfram Demonstrations Project site:

http://demonstrations.wolfram.com/PlatosShadowrmoib|
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