PREVISÃO DE INSOLVÊNCIA NO SETOR DE MATERIAL BÁSICO APLICANDO MINERAÇÃO DE DADOS

Rui Américo Horta, Carlos Cristiano Borges, Francisco Alves Santos

Resumo


Este estudo tem como objetivo selecionar variáveis em base de dados de empresas do setor de materiais básicos aplicando técnicas de mineração de dados em problemas de previsão de insolvência utilizando técnicas de balanceamento da base de dados com (etapa de) seleção de atributos.A partir dessas variáveis selecionadas visa-se obter as implicações contábeis que expliquem sobre a descontinuidade dessas empresas. Esta pesquisa é de natureza aplicada com abordagem quantitativa, quanto ao objetivo, é descritiva. A base de dados utilizada foi originada de demonstrativos contábeis de empresas listadas na BM&FBOVESPA entre os anos de 1996 e 2012. Esse setor foi escolhido devido a sua relevância para a economia brasileira em termos de competitividade e faturamento. As variáveis selecionadas foram: EOCpOT, EOAT, GAF, MB, EBITDA, MO e TERFIN. Os resultados obtidos mostraram que as empresas deste setor se tornam insolventes não somente porque perdem a capacidade (financeira) de se endividarem, mas também porque perdem a capacidade operacional de gerar caixa.


Palavras-chave


Finanças; Previsão de Insolvência

Texto completo:

doi:10.4270/ruc.2015321

Referências


ALTMAN, E. I. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. Journal of Finance, v. 23, n. 4, p. 589-609, 1968. http://dx.doi.org/10.1111/j.1540-6261.1968.tb00843.x

______; HALDEMAN, R. G.; NARAYANAN, P. Zeta Analysis: A new model to identify bankruptcy risk of corporations, Journal of Banking and Finance, v. 1, p. 29–54, 1977. http://dx.doi.org/10.1016/0378-4266(77)90017-6

______; BAIDYA, T. K. N.; DIAS, L. M. R. Previsão de problemas financeiros em empresas. Revista de Administração de Empresas, v. 19, jan./mar., p. 17-28, 1979. http://dx.doi.org/10.1590/S0034-75901979000100002

______; GIANCARLO, M.; VARETTO, F. Corporate distress diagnosis: Comparisons using linear discriminant analysis and neural networks (the Italian experience). Journal of Banking & Finance, v. 18, n. 3, p. 505-529, 1994. http://dx.doi.org/10.1016/0378-4266(94)90007-8

ATIYA, A. F. Bankruptcy prediction for credit risk using neural network: a survey and new results. IEEE transactions on neural networks, v. 12, n. 4, p. 929-935, 2001. http://dx.doi.org/10.1109/72.935101

BALCAEN, S.; OOGHE, H. 35 Years of studies on business failure: on overview of the classical statistical methodologies and their related problems. The British Accounting Review, v. 38, n. 1, p. 63-93, 2006. http://dx.doi.org/10.1016/j.bar.2005.09.001

BRAGA-NETO, U.; HASHIMOTO, R.; DOUGHERTY, E. R.; NGUYEN, D. V.; CARROLL, R. J. Is cross-validation better than resubstitution for ranking genes? Bioinformatics, v. 20, n. 2, p. 253-258, 2004. http://dx.doi.org/10.1093/bioinformatics/btg399

CANBAS S, A.; CABUK, S.B.; KILIC, Prediction of commercial bank failure via multivariate statistical analysis of financial structure: The Turkish case, European Journal of Operational Research, v. 166, p. 528–546, 2005. http://dx.doi.org/10.1016/j.ejor.2004.03.023

CHAWLA, N. V.; BOWYER, K. W.; HALL, L. O.; KEGELMEYER, W. P. SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, v. 16, p. 321-357, 2002. http://dx.doi.org/10.1613/jair.953

______; JAPKOWICZ, N.; KOLCZ, A. Editorial: Special Issue on Learning from Imbalanced Datasets. SIGKDD Explorations, v. 6, n. 1, p. 1-6, 2004. http://dx.doi.org/10.1145/1007730.1007733

DAMODARAN, Aswath. Finanças corporativas aplicadas. Tradução Jorge Ritter. Porto Alegre: Bookman, 2002.

DING, Y.; SONG, X., ZEN,Y. Forecasting financial condition of Chinese listed companies based on support vector machine. Expert Systems with Applications, v. 34, n. 4, p. 3081-3089, 2008. http://dx.doi.org/10.1016/j.eswa.2007.06.037

ELIZABETSKY, R. Um modelo matemático para decisão no banco comercial. (Trabalho apresentado ao Departamento de Engenharia de Produção da Escola Politécnica da USP). São Paulo: USP, 1976.

GARY M. Weiss. Mining with Rarity: A Unifying Framework, SIGKDD Explorations, v. 6, Issue 1, 2004, p.7-19.

HAN, J.; KAMBER, M.; PEI, J. Data mining: concepts and techniques. 3rd ed. Waltham: Morgan Kaufmann, 2011. 744 p.

HORTA, Rui Américo Mathiasi. Utilização de indicadores contábeis na previsão de insolvência: Análise empírica de uma amostra de empresas comerciais e industriais brasileiras. 2001. 108 p. Dissertação Mestrado em Ciências Contábeis – Faculdade de Ciências Contábeis da Universidade Estadual do Rio de Janeiro.

HORTA, Rui Américo Mathiasi. Uma metodologia de mineração de dados para a previsão de insolvência de empresas brasileiras de capital aberto. 2010. 152 p. Doutorado em Engenharia Civil – COPPE - Universidade Federal do Rio e Janeiro.

HORTA R.A.M., DE LIMA B.S.L.P., BORGES C.C.H. A semi-deterministic ensemble strategy for imbalanced datasets (SEID) applied to bankruptcy prediction. In: Data mining IX: data minig, protection, detection and other security technologies. WIT transactions on information and communication technologies, v. 40, Spain, 2008, p. 205–213.

HORTA, Rui Américo Mathiasi; Carlos Cristiano Hasenclever Borges; JORGE, M. J. Descontinuidade de empresas brasileiras do setor de consumo cíclico: Uma metodologia para balanceamento de base de dados utilizando técnicas de data mining. Revista Ambiente Contábil, v. 6, p. 99-121, 2014.

HORTA, Rui Américo Mathiasi; JORGE, M. J.; ALVES, F. J. Descontinuidade de empresas brasileiras do setor de consumo não cíclico: Uma metodologia para balanceamento de base de dados utilizando técnicas de data mining. Revista de Informação Contábil (UFPE), v. 07, p. 63-83, 2013.

HUA, Zhongsheng; WANG, Yu; XU, Xiannoyan; ZHANG, Bin; LIANG, Liang. Predicting corporate financial distress based on integration of support vector machine and logistic regression. Expert Systems with Applications, v. 33, Issue 2, p. 434-440, 2007. http://dx.doi.org/10.1016/j.eswa.2006.05.006

HUNG, Chihli; CHEN, Jing-Hong. A selective ensemble based on expected probabilities for bankruptcy prediction. Expert systems with applications, v. 36, Issue 3, p. 3297-5309, 2009. http://dx.doi.org/10.1016/j.eswa.2008.06.068

IUDÍCIBUS, S. de. Análise de Balanços. 9. ed. São Paulo: Atlas, 2008. 258 p.

JAPKOWICZ N.; STEPHEN, S. The Class Imbalance Problem: A Systematic Study. Intelligent Data Analysis, v. 6, Issue 5, p. 429-449, 2002.

JOSHI, M. V. Learning Classier Models for Predicting Rare Phonemena. PhD thesis, University of Minnesota, Twin Cites, Minnesota, USA, 2001.

KANITZ, Stephen Charles. Como prever falências. São Paulo: Mc Graw-Hill do Brasil, 1978.174 p.

KÄUCK, H. Bayesian formulations of multiple instance learning with applications to general object recognition. Master's thesis, University of British Columbia, Vancouver, BC, Canada, 2004.

KIM, Hong Sik; SOHN, So Young. Support vector machines for default prediction of SMEs based on technology credit. European Journal of Operational Research, v. 201, Issue 3, p. 838-846, 2010. http://dx.doi.org/10.1016/j.ejor.2009.03.036

KOHAVI, R..; JOHN, G. H. Wrappers for feature subset selection. Artif. Intell., v.97, 1997. p. 273-324. http://dx.doi.org/10.1016/S0004-3702(97)00043-X

LI HUI, JIE SUN. Majority voting combination of multiple case-based reasoning for financial distress prediction. Expert Systems with Applications, v.36, p. 4363-4373, apr, 2009. http://dx.doi.org/10.1016/j.eswa.2008.05.019

LOPES, Alexsandro Broedel; MARTINS, Eliseu. Teoria da contabilidade: uma nova abordagem – 2ª. Reimpressão – São Paulo: Atlas, 2007.

MARTIN, D. Early warning of bank failure: A logit regression approach, Journal of Banking and Finance, v.1, p. 249–276, 1977. http://dx.doi.org/10.1016/0378-4266(77)90022-X

MATARAZZO, Dante Carmine. Análise financeira de balanços: abordagem básica e gerencial. 6ª Ed. São Paulo: Atlas, 2003.

MATIAS, Alberto Borges. Contribuição às técnicas de análise financeira: um modelo de concessão de crédito. (Trabalho apresentado ao Departamento de Administração da Faculdade de Economia e Administração da USP.) São Paulo: [s.n.], 1978, p. 82, 83, 90.

MIN,Sung-Hwan.; LEE, Jumin,;HAN. Ingoo. Hybrid genetic algorithms and support vector machines for bankruptcy prediction. Expert Systems with Applications, v. 31, Issue 3, p. 652-660, oct. 2006. http://dx.doi.org/10.1016/j.eswa.2005.09.070

MOROZINI, João Francisco; OLINQUEVITCH, José Leônidas; HEIN, Nelson. Seleção de índices na análise de balanços: uma aplicação da técnica estatística ‘ACP’. Revista Contabilidade & Finanças USP. São Paulo Vol. 2 Número 41, Maio/Agosto 2006. http://dx.doi.org/10.1590/S1519-70772006000200007

NANNI, Loris,; LUMINI, Alessandra. An experimental comparison of ensemble of classifiers for bankruptcy prediction and credit scoring. Expert Systems with Applications, v. 36, Issue 2, Part 2, p. 3028-3033, mar. 2009. http://dx.doi.org/10.1016/j.eswa.2008.01.018

OHLSON, J.A. Financial ratios and the probabilisitic prediction of bankruptcy. Journal of Accounting Research, v. 18, p.109-131, 1980. http://dx.doi.org/10.2307/2490395.

OLSON, David L. DELEN, Dursun, MENG, Yanyan. Comparative analysis of data mining methods for bankruptcy prediction. Decision Support Systems, v. 52, n. 2, January 2012, p. 464-473. http://dx.doi.org/10.1016/j.dss.2011.10.007

PIRAMUTHU S. On preprocessing data for financial credit risk evaluation. Expert Systems with Applications, v. 30, p.489-497, 2006. http://dx.doi.org/10.1016/j.eswa.2005.10.006

RAVI, V.; KURNIAWAN, H.; THAI, Peter Nwee Kok,; KUMAR, P. Ravi. Soft computing system for bank performance predition. Applied Soft Computing, v. 8, p. 305-315, jan. 2008. http://dx.doi.org/10.1016/j.asoc.2007.02.001

ROSS, Stephen A.; WESTERFIELD, Randolph, W. Jaffe; JORDAN, Bradford; LAMB, Roberto. Fundamentos de Administração Financeira – Porto Alegre: Editora Mc Graw Hill, 9ª edição, 2013.

SANVICENTE, Antônio Zoratto:, MINARDI, Andréa Maria A. F. Identificação de indicadores contábeis significativos para previsão de concordata de empresas. Disponível: . Acesso em: 23/10/2005.

SHIN, Kyung-Shik; LEE, Yong-Joo; KIM, Hyun-Jung. An application of support vector machines in bankruptcy prediction model. Expert Systems with Applications, v. 28, Issue 1, p. 127-135, jan. 2005.

SILVA BRITO, Giovani Antônio; ASSAF NETO, Alexandre; CORRAR, Luiz João. Sistemas de classificação de risco de crédito: uma aplicação a companhias abertas no Brasil. Revista Contabilidade & Finanças USP. São Paulo, v. 20, n. 51, p. 28-43, Setembro/Dezembro, 2009.

SILVA, José Pereira da. Gestão e análise de risco de crédito. 5. ed. São Paulo: Atlas, 2006. 448 p.

SOMOL P.; BAESENS B.; PUDIL P.; VANTHIENEN J., Filter-versus Wrapper-based Feature Selection for Credit Scoring, International Journal of Intelligent Systems, v. 20, Number 10, p. 985-999, 2005.

SUN, Jie; LI, Hui; HUANG, Qing-Hua; HE, Kai-Yu. Predicting financial distress and corporate failure: A review from the state-of-the-art definitions, modeling, sampling, and featuring approaches. Knowledge-Based Systems, v. 57, p. 41-56, February 2014.

TINOCO, Mario Hernandez, WILSON Nick. Financial distress and bankruptcy prediction among listed companies using accounting, market and macroeconomic variables. International Review of Financial Analysis, v. 30, p. 394-419, December 2013.

TSAI, C. F. Feature selection in bankruptcy prediction. Knowledge-Based Systems, v. 22, n. 2, p. 120-127, mar. 2009. http://dx.doi.org/10.1016/j.knosys.2008.08.002

______; WU J. W. Using neural network ensembles for bankruptcy prediction and credit scoring. Expert Systems with applications, v. 34, n. 4, p. 2639-2649, May 2008.

______; HSU, Yu-Feng; YEN, David C. A comparative study of classifier ensembles for bankruptcy prediction. Applied Soft Computing, v. 24, p. 977-984, November 2014.

VERIKAS, Antanas; KALSYTE, Zivile; BACAUSKIENE, Marija; GELZINIS, Adas. Hybrid and ensemble-based soft computing techniques in bankruptcy prediction: a survey. Soft Comput v.14, p. 995-1010, 2010. http://dx.doi.org/10.1007/s00500-009-0490-5

WEISS, G. M.; McCARTHY, K.; BIBI, Zabar. Cost-Sensitive Learning vs. Sampling: Which is Best for Handling Unbalanced Classes with Unequal Error Costs?, In: Proceedings of the 2007 International Conference on Data Mining, Fordham University, Bronx, NY, USA, SREA Press, p. 35-41, 2007.

WEST, David; DELLANA, Scott; QIAN, Jingxia. Neural network ensemble strategies for financial decision applications. Computers & Operations Research, v. 32, n. 10, p. 2543-2559, oct. 2005. http://dx.doi.org/10.1016/0378-4266(85)90021-4

WEST, R. C, A factor analytic approach to bank condition, Journal of Banking and Finance, v. 9, p. 253-266, jun.1985.

WITTEN, Ian .H.; FRANK, Eibe. Data Mining: Practical Machine Learning Tools and Techniques. The Morgan Kaufmann Series in Data Management Systems, 3rd ed. 2011. 630 p.

WU, Y.; GAUNT, C. GRAY, S. A comparison of alternative bankruptcy prediction models. Journal of Contemporary Accounting & Economics, v. 6, n. 1, p. 34-45, June 2010. http://dx.doi.org/10.1016/j.jcae.2010.04.002

YU, L. WAUNG; LAI, K. K. Credit risk assessment with a multistage neural network ensemble learning approach. Expert Systems with Applications, v. 34, p. 1434-1444, fev. 2008. http://dx.doi.org/10.1016/j.eswa.2007.01.009

ZHOU, Ligang. Performance of corporate bankruptcy prediction models on imbalanced dataset: The effect of sampling methods. Knowledge-Based Systems, v. 41, p. 16-25, mar. 2013. http://dx.doi.org/10.1016/j.knosys.2012.12.007




DOI: http://dx.doi.org/10.4270/ruc.2015343-62

Locations of visitors to this page

................................................................................................................................................................................................................................................................

Revista Universo Contábil - ISSN 1809-3337
Rua Antonio da Veiga, 140, Sala D-202
CEP 89012-900, Blumenau, SC, Brasil
Tel.: +554733210938 Fax: +554733228818
e-mail: universocontabil@furb.br