INDICADORES PARA ANÁLISE DE PROJETOS DE INVESTIMENTO CONSIDERANDO FLUXOS DE BENEFÍCIOS NÃO–DETERMINÍSTICOS

Marcos Antonio Masnik Ferreira

Resumo: Este artigo estudia o problema da análise de fluxos de caixa nos quais os benefícios futuros não são determinísticos. Na grande maioria dos projetos do mundo moderno, é extremamente difícil, quando não impossível, determinar com exatidão os valores futuros a serem auferidos. É sumamente importante que o tomador de decisão tenha elementos para poder verificar quando esses benefícios estão estimados dentro de uma faixa de valores. A abordagem clássica da análise de projetos parte do pressuposto, já inadecuado, de que os benefícios são previamente determinados com exatidão, o que não ocorre em grande parte dos casos. Portanto, a utilidade desta abordagem encontra seu limite quando os valores são distribuídos aleatoriamente dentro de uma faixa de valores. Este artigo se propõe a desvendar e apresentar uma metodologia para a análise de projetos nos quais os fluxos de benefícios são estimados dentro de uma faixa de valores.

1 INTRODUÇÃO

A grande questão que se coloca para o Engenheiro de Finanças é: que projetos devem ser realizados e quais devem ser abandonados? Meyers, (1998); Souza; Clemente (2004) defendem um conjunto de índices para a análise de rentabilidade e risco de projetos nos quais se conhece, de maneira determinística, o fluxo futuro dos benefícios a serem auferidos caso se decida pela sua implantação.

Valor Presente Líquido (VPL), Valor Presente Líquido Anualizado (VPLA), Índice Benefício Custo (IBC), Retorno Adicional sobre o Investimento (ROIa) e Taxa Interna de Retorno (TIR) são os principais indicadores apresentados por Souza; Clemente (2004). A razão de se utilizarem diversos indicadores e não apenas um, como sustentam alguns autores, é propiciar ao tomador de decisão uma visão mais abrangente do investimento no que tange tanto a sua rentabilidade quanto ao seu risco.

Entretanto, para a grande maioria dos projetos do mundo moderno, é impossível determinar exatamente qual será o fluxo dos benefícios durante a vida do projeto. Ao Engenheiro de Finanças, nesses casos, é fornecido não mais um valor exato para cada período, e sim uma faixa de valores considerados como aceitáveis. Nesse caso, o problema torna-se bem mais complexo, não que se esteja considerando a análise determinística como simples. Apenas se está considerando que a Engenharia de Finanças já domina, em sua grande parte, a questão de analisar projetos com fluxos de benefícios determinísticos.

2 OBJETIVO

O objetivo deste estudo é demonstrar como os indicadores VPL, VPLA, IBC, ROIa e TIR podem ser usados também para fluxos aleatórios. Como o fluxo de benefícios é aleatório, o que se determinará para cada indicador é a sua média, variação e desvio-padrão. Assim, pode-se responder a perguntas, como por exemplo, qual é a probabilidade de que o VPL esteja abaixo, acima ou entre determinado valor? Dessa forma, o tomador de decisão poderá, considerando a distribuição de probabilidade de cada indicador, optar ou não pela implantação do projeto.

Segundo Bernstein (1997), o risco é uma opção, e não um destino do ser humano. Cabe à ciência informar ao tomador de decisão qual é esse risco e, por conseguinte, o tomador de decisão, decidirá se é
conveniente a implantação do projeto. Ele é livre para ouvir ou não. Entretanto, sua decisão será fruto de uma análise concreta, e não uma mera apostas no incerto.

3 DISTRIBUIÇÃO DE PROBABILIDADE DOS INDICADORES DE ANÁLISE DE PROJETOS

Para o restante deste trabalho, considera-se o seguinte problema que apresenta um fluxo aleatório de benefícios: um projeto necessita de um investimento inicial de R$ 100.000,00 e, durante o prazo de 10 anos, terá um fluxo de benefícios que será uniformemente distribuído entre R$ 16.000,00 e R$ 24.000,00. Nesse intervalo, qualquer valor é igualmente provável. Considera-se que a taxa de desconto, também conhecida por Taxa de Minima Atratividade (TMA), utilizada pela empresa seja de 10% ao ano.

Depreende-se do enunciado que os benefícios do projeto estejam uniformemente distribuídos entre R$ 16.000,00 e R$ 24.000,00. Meyer (1983) mostra que o Valor Esperado E(x) de uma variável aleatória uniformemente distribuída, no intervalo [a,b], é dado por \(\frac{(a + b)}{2} \), onde [a,b] representa o intervalo de variação de X. A variância de uma distribuição uniforme é dada por \(\frac{(b - a)^2}{12} \).

Assim, para o problema acima, pode-se calcular a Esperança E(x), ou seu valor médio, de cada benefício e a Variância V(x).

\[
E(x) = \frac{(16000 + 24000)}{2} = 20000,00 \quad (1)
\]

\[
V(x) = \frac{(24000 + 16000)^2}{12} = 5333.333,33 \quad (2)
\]

Caso a distribuição de probabilidade do fluxo seja outra que não a uniforme, a média e a variância de cada fluxo individual devem ser calculadas de acordo com a distribuição de probabilidade do problema. No caso acima, se está assumindo que, para todos os benefícios futuros, a distribuição de probabilidade é a uniforme.

A seguir, serão apresentados os cálculos dos indicadores financeiros e de risco do projeto (VPL, VPLa, IBC, ROIA e TIR), levando em consideração o fluxo aleatório dos benefícios.

3.1 VALOR PRESENTE LÍQUIDO (VPL)

O VPL é calculado descontando-se, usando a TMA como taxa de desconto, todos os valores dos benefícios para o período zero. Em seguida, subtraia desses valores o investimento inicial. Caso esse valor seja positivo, o projeto apresenta ganho em relação à TMA e, a princípio, é vantajosa sua implantação: \(S_n = X_1 + X_2 + \ldots + X_n \).

Entretanto, no problema aqui apresentado, estão sendo somadas variáveis aleatórias e se precisa fazer uso do Teorema do Limite Central (TCL), também apresentado por Meyer (1983). Ao somar uma sequência de variáveis aleatórias independentes \(X_i \), sendo \(S_n = X_1 + X_2 + \ldots + X_n \) a soma dessas variáveis, o TCL trata da convergência da distribuição da estatística \(S_n - E(S_n) \over \sqrt{V(S_n)} \) para uma distribuição N(0,1).

No problema acima, ter-se-á que a soma das variáveis aleatórias conduzirá para uma distribuição normal com média (\(\mu \)) igual a

\[
\mu_{VPL} = -100 + \frac{10 \times 2000}{10(1 + 0,1)^{10}} = 22891,34 \quad (3)
\]

Investimento inicial = 100.000
Valor Médio dos Benefícios E(x) = 20.000,00, calculado em (1)
TMA = 10%
A Variância (\(\sigma^2 \)) do VPL é calculada através da seguinte expressão:

\[
\sigma^2_{VPL} = \frac{5333.333,33}{10(1 + 0,1)^{10}} = 21.621.749,13 \quad (4)
\]

Variação de cada período \(V(x) = 5.333.333,33 \), calculada em (2)

Elevou-se parte da expressão anterior ao quadrado devido à propriedade da Variância, \(V(\alpha X) = \alpha^2 V(X) \) onde X é a variável aleatória, e \(\alpha \) é uma constante. Na expressão anterior, o valor de 5.333.333,33 é a variável aleatória, e todo o restante da expressão é determinístico; por essa razão, elevou-se ao quadrado.

Dessa forma, para o problema exposto, tem-se que a soma das variáveis aleatórias (fluxo dos períodos) conduziu a uma distribuição N(22.891,34; 21.621.749,13).

Sendo o desvio-padrão (\(\sigma \)) a raiz quadrada da variância, tem-se, então, que \(\sigma_{VPL} = 4.649.82 \).

A Figura 1 mostra a distribuição de probabilidade do Valor Presente Líquido considerando a média e a variância calculadas. Com essa distribuição de probabilidade, pode-se calcular a probabilidade de o VPL estar abaixo, acima ou entre quaisquer valores, como nos exemplos abaixo:

208 Revista de Negócios, Blumenau, v. 9, n. 4, p. 207-214, outubro/dezembro 2004
INDICADORES PARA ANÁLISE DE PROJETOS DE INVESTIMENTO CONSIDERANDO FLUXOS DE BENEFÍCIOS NÃO-DETERMINÍSTICOS

1) \(P(VPL < 15.000,00) = 4,48\% \)
2) \(P(18.241,42 < VPL < 27.541,26) = 68,27\% \)

No exemplo 2, observa-se que a probabilidade encontrada é a mesma de, em uma distribuição normal, se estar entre um desvio-padrão abaixo e acima da média. Nesse momento, cabe ao tomador de decisão considerar se vale a pena ou não, levando em conta o risco calculado, implantar o projeto.

O Valor Presente Líquido sozinho pode conduzir o Enxerife de Finanças a um juízo equivocado sobre a conveniência de se implantar o projeto. O VPL apenas está indicando, considerando toda a vida do projeto, se há ou não ganho. Dois projetos podem apresentar o mesmo VPL, mas um com um período de vida de 10 anos e outro, de 50. Nesse caso, o de menor duração será mais vantajoso, pois apresenta um ganho maior ao ano.

Assim sendo, outros indicadores são necessários para tomada de decisão, O VPLa fornece uma ideia clara do respeito da rentabilidade anual do projeto. A seguir, demonstra-se o cálculo da distribuição de probabilidade desse indicador.

3.2 VALOR PRESENTE LÍQUIDO ANUALIZADO (VPLa)

Enquanto o VPL concentra todos os valores do fluxo de benefícios no período zero, o VPLa transforma em uma série uniforme, ao longo da vida do projeto, o valor do VPL, permitindo, assim, que se comparem projetos com horizontes distintos. Como já se tem calculado o valor médio do VPL \((22.891,34) \), através da expressão (3), o cálculo do valor médio do VPLa é dado pela expressão da série uniforme

\[
u'VPLa = \frac{22.891,34 \cdot 0,1^1 + 0,1^2}{[1 + 0,1]^{10} - 1} = 3.725,46 \quad (5)
\]

Este valor pode também ser obtido usando-se a fórmula \(PGTO (0.1 ; 10 ; -22.891,34) \) do Microsoft Excel, sendo seus parâmetros, respectivamente, a taxa de juros por período, o número de períodos e o Valor Presente da série.

Para o cálculo da variância, segue-se o mesmo raciocínio, considerando, entretanto, a probabilidade já mencionada da variância \(V(ax) = a^2V(x) \). Tem-se que calcular a variância do VPLa a partir da variância do VPL usando a mesma expressão da série uniforme anterior:

\[
\sigma^2VPLa = 21.621.749,13 \cdot \left(\frac{0,1^1 + 0,1^2}{[1 + 0,1]^{10} - 1} \right) = 572.675,02
\]

Deve-se recordar que, na expressão acima, a única variável aleatória é o valor 21.621.749,13 e que, portanto, o restante deve ser elevado ao quadrado. De posse da variância, o cálculo do desvio-padrão é: \(\sigma VPLa = 756,75 \)

Outra possibilidade é calcular primeiro o desvio-padrão do VPLa a partir do desvio-padrão do VPL e, em seguida, calcular a variância do VPLa. O desvio-padrão do VPLa pode ser obtido através da fórmula

\[
\sigma VPLa = PGTO(0,1;10;4.649,92) = 756,75
\]

sendo 0,1 a taxa de juros, 10 a quantidade de períodos e 4.649,92 o desvio-padrão do VPL. O que se fez foi transformar o desvio-padrão do VPL em uma série uniforme com o número de períodos do projeto de investimento.

Então, o problema apresenta uma distribuição normal de probabilidade do VPLa de acordo com os parâmetros N(3.725,46; 572.675,02). A Figura 2 mostra o gráfico dessa distribuição de probabilidade.

\[
\text{Figura 1 – Distribuição de Probabilidade do Valor Presente Líquido (VPL)}
\]

\[
\text{Figura 2 – Distribuição de Probabilidade do Valor Presente Líquido Anualizado (VPLa)}
\]
pode conduzir a uma decisão inapropriada. Um projeto pode apresentar um VPL e VPLa superior a outro, que pode estar no mesmo horizonte de vida ou não, mas que se tenha investido muito mais neste para se ter aquele ganho. Por exemplo, podem se ter dois projetos: um projeto A que apresenta um VPL de 100 unidades monetárias e um projeto B com VPL de 50 unidades monetárias. É temerário escolher o primeiro sem antes perguntar quanto se investirá em cada um deles. Poder-se-ia ter uma situação em que se investiram 100 unidades monetárias no projeto A e apenas 5 unidades monetárias no projeto B. Fica evidente que considerar apenas o VPL e o VPLa na tomada de decisão pode conduzir a decisões incorretas do ponto de vista da rentabilidade do investimento.

O índice que informa ao tomador de decisão quanto se está ganhando em relação ao que foi investido é o Índice Benefício/Custo.

3.3 ÍNDICE BENEFÍCIO CUSTO (IBC)

O IBC é calculado pela razão entre o Valor Presente do fluxo de benefícios e o Valor Presente do fluxo de investimentos. Portanto, se o valor do IBC for maior do que 1, o projeto deve continuar a ser considerado para implantação. Caso seja menor do que 1, o projeto deve ser desconsiderado, pois há prejuízo em sua implantação.

O IBC mede, então, a rentabilidade do projeto em relação ao que foi investido ao longo da vida do projeto. Por exemplo, um IBC igual a 1,35 significa que o projeto terá um rendimento sobre o capital investido de 35% ao longo da sua existência, supondo que os valores do fluxo de benefícios tenham sido investidos na TMA. O cálculo do valor médio do IBC é dado pela expressão

$$ \mu_{IBC} = \frac{100.000 + 22.891.34}{100.000} = 1.2289 $$

Investimento inicial = 100.000
Valor Médio do VPL \(\mu_{VPL} = 20.000 \), calculado em (3).
Assim, tem-se um rendimento médio de 22,89% ao longo da vida do projeto. A variância do IBC é dada pela expressão

$$ \sigma^2_{IBC} = \frac{21.621.749.13}{100.000^2} = 0,00216217 $$

Investimento inicial = 100.000
Variância do VPL \(\sigma^2_{VPL} = 21.621.749.13 \), calculado em (4).

Consequentemente, o desvio-padrão do IBC é igual a \(\sigma_{IBC} = 0,04649919 \)
Observa-se que este é o mesmo valor obtido pela expressão \(\sigma_{IBC} = \frac{4.649,92}{100.000} \), na qual 4.649,92 é o desvio-padrão do VPL.

Assim, o problema apresenta uma distribuição normal de probabilidade do IBC com parâmetros N(1,2289; 0,04649919). Seu gráfico é mostrado na Figura 3. Para o problema em análise, a probabilidade P(1,1824 < IBC < 1,27541261) é igual a P(18,241,42 < VPL < 27,541,26) que, por sua vez, é igual a 68,27%, o que comprova os resultados obtidos para a distribuição de probabilidades do IBC.

Com a distribuição de probabilidades do IBC, o tomador de decisão poderá comparar projetos com fluxos de benefícios aleatórios, levando em conta o ganho em relação ao que foi investido.

A probabilidade de o projeto apresentar prejuízo pode ser calculada de duas formas:
P(IBC<1) = 4,2686 X 10^{-2}, ou seja, é muito improvável que esse projeto presente prejuízo caso se opte pela sua implantação.

Figura 3 - Distribuição de Probabilidade do Índice Benefício Custo (IBC)

Contudo, o IBC representa o ganho durante toda a existência do projeto, o que dificulta sua comparação em relação à TMA, pois essas taxas não estão no mesmo período. O Retorno Adicional sobre o Investimento é o equivalente ao IBC, porém no mesmo período da TMA.

3.4 RETORNO ADICIONAL SOBRE O INVESTIMENTO (ROIA)

O ROIA é percentual de ganho, no mesmo período da TMA, mostrando qual é a riqueza gerada pelo projeto acima da TMA. O tomador de decisão pode, então, decidir se é conveniente investir no projeto, pois ele tem a exata noção de quanto sua implantação gerará de ganho.

O valor médio do ROIA é obtido pela expressão

$$ u_{ROIA} = \frac{1}{10} - 1 = 0,02083 $$

$$ u_{IBC} = 1,2289 \), calculado em (9). Durante do projeto = 10
Portanto, tem-se um ganho médio por período de 2,083% acima da TMA para esse projeto.

Para o cálculo da variância do ROIA, primeiro se calcula o seu desvio-padrão através da igualdade
\[uIBC - \sigma_{IBC} = (1 + uROIA - \sigma_{ROIA}) \]
(13)
e, em seguida, sua variância. O cálculo do desvio-padrão do problema em questão é apresentado abaixo:
\[\sigma_{ROIA} = (1 + uROIA) \cdot (uIBC - \sigma_{IBC}) \]
\[\sigma_{ROIA} = (1 + 0,02803) \cdot (1,2289 - 0,04649919)^{10} \]

Consequentemente, a variância do ROIA é igual a \[\sigma^2_{ROIA} = 0,001544\% \] e a distribuição de probabilidade do ROIA fica com os parâmetros N(0,02083; 0,00001544), conforme mostra a Figura 4.

A probabilidade P(1,6897 < ROIA < 2,47569) = 68,27%, ou seja, a probabilidade de que o ROIA esteja entre um desvio-padrão acima e abaixo de sua média é igual a 68,27% que é igual a P(1,1824 < IBC < 1,275441261).

Todos os indicadores já analisados são importantes para que o tomador de decisão verifique a viabilidade do investimento do ponto de vista de sua rentabilidade. Mas, quanto ao risco do projeto? O que acontecerá se a TMA tiver uma oscilação para cima? Este é um risco a ser considerado, pois a TMA é a taxa na qual o investidor aplicará seu dinheiro, caso não opte pelo investimento. Como por definição, a TMA é uma taxa de baixo risco; se esta taxa aumentar, a mesma pode se aproximar do ganho do investimento, aumentando, assim, o risco de se investir. Portanto, quanto mais afastada estiver a TMA da TIR, mais seguro será investir no projeto. Um dos parâmetros para se medir o risco de um investimento é a Taxa Interna de Retorno (TIR).

3.5 TAXA INTERNA DE RETORNO (TIR)

Por definição, a TIR é a taxa que torna o Valor Presente Líquido de um fluxo de caixa igual a zero. Assim sendo, quanto maior a distância entre a TMA e a TIR, menores serão o risco do projeto, pois pequenas variações na TMA não afetam o desempenho positivo do mesmo. O fluxo inicial (investimento de R$ 100 mil e 10 benefícios futuros de R$ 20.000,00) resulta uma TIR média igual a \[\mu_{TIR} = 15, 0984\% \]. lembrando que o desvio-padrão do \[\sigma_{VPLa} \] calculado é igual a R$ 756,75, a TIR do novo fluxo (investimento de R$ 100 mil e 10 benefícios futuros de R$ 19.243,25) resulta uma TIR igual a 14,0960%. Por conseguinte, o desvio-padrão da TIR é igual a \[\sigma_{TIR} = 1, 00240\% \] e sua variância \[\sigma^{2}_{TIR} = 0, 010048\% \], conforme mostra a Figura 5.

Neste ponto, pode-se informar ao tomador de decisão qual é a probabilidade de que a TIR esteja dentro de uma faixa de valores, que por exemplo, P(13,09% < TIR < 17,10%)=95,45%. Isso significa que, no projeto em análise, há uma segurança muito grande de que a TIR se mantenha afastada da TMA e, sob este ponto de vista, o projeto é seguro.

4 MÉTODO NUMÉRICO PARA A OBTENÇÃO DOS INDICADORES FINANCEIROS

Os indicadores financeiros que foram calculados analiticamente podem ser, também, calculados através da geração numérica dos fluxos de benefícios futuros.

Usando-se o Microsoft Excel, foi gerada uma simulação com 5.000 fluxos de benefícios de acordo com a distribuição uniforme \[U[16.000; 24.000] \], como mostra a Figura 6. Cada fluxo foi gerado através da fórmula
\[=16.000 + ALEATORIO() \times 8.000 \]

Sabe-se que a função ALEATORIO() gera uma distribuição uniforme \[U[0,1] \].

Para cada fluxo, foram calculados os indicadores financeiros VP, VPL, VPLa, IBC, ROA e TIR. Em seguida, calcularam-se a média e o desvio-padrão de cada indicador. O cálculo da média do indicador foi feito simplesmente somando todos os valores do indicador em cada fluxo e dividindo pelo tamanho da amostra (5000). Para o cálculo do desvio-padrão foi utilizada a função DESVPAD().
A Figura 6 mostra os valores encontrados para a média e o desvio-padrão dos indicadores, tanto na forma analítica quanto na forma numérica.

<table>
<thead>
<tr>
<th>Indicador</th>
<th>Método Analítico</th>
<th>Método Numérico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mínimo</td>
<td>2.562</td>
<td>2.562</td>
</tr>
<tr>
<td>Máximo</td>
<td>3.562</td>
<td>3.562</td>
</tr>
<tr>
<td>Média</td>
<td>3.062</td>
<td>3.062</td>
</tr>
<tr>
<td>Desvio-Padrão</td>
<td>0.562</td>
<td>0.562</td>
</tr>
</tbody>
</table>

Figura 7 - Valores de média e do desvio-padrão encontrados numéricamente e analiticamente.

Consta-se, pelos dados acima, que os valores obtidos pelo método numérico estão muito próximos dos valores calculados pelo método analítico e que, por conseguinte, estão corretos. No método numérico, seria necessário um número muito grande de simulações para que os valores convergissem para a média e desvio-padrão da distribuição.

5 CONCLUSÃO

Na grande maioria dos projetos, assumir que os valores de um fluxo de caixa são determinísticos é uma grande limitação em uma análise mais abrangente, principalmente no caso de se assumirem como determinísticos aqueles fluxos que representam os benefícios. No mundo das finanças, em quase sua totalidade, não há como fugir dos gastos. Os benefícios futuros é que, muitas vezes, não ocorrem nem na quantidade nem na qualidade desejadas. E foi neste ponto que este trabalho se concentrou.

Não se pode nem dizer que a aleatoriedade dos fluxos de caixa seja um fenômeno do mundo moderno. O mundo sempre foi aleatório. O ser humano é que insiste em tratá-lo como determinístico, na maioria dos casos, para simplificar a explanação de sua existência.

Foram apresentados os passos a serem seguidos para determinar as distribuições de probabilidades levando em consideração o Teorema do Limite Central. A partir dessas distribuições, o tomador de decisão tem a clara noção dos riscos envolvidos na análise dos projetos. A vantagem dos cálculos feitos através do método analítico é que os valores da média e do desvio-padrão da distribuição são obtidos diretamen-

te, evitando-se a necessidade da simulação. Assim sendo, é uma solução mais rápida e eficiente, principalmente, se for considerada a eficiência computacional do método.

Neste trabalho, assumiu-se que a distribuição de probabilidade dos fluxos de benefícios, em cada período, seguiu uma distribuição uniforme. Na realidade, a distribuição uniforme só deve ser usada quando se desconhecer o comportamento do fenômeno, pois, se este fosse conhecido, usar-se-ia a própria distribuição do fenômeno. Entretanto, todo o raciocínio subsequente permanece o mesmo em virtude do Teorema do Limite Central.

REFERÊNCIAS

INDICATORS FOR ANALYSIS OF INVESTMENT PROJECTS CONSIDERING CHANGES IN NON-DETERMINED BENEFITS

Abstract: This article studies the problem of cash flow analysis in which future benefits are undetermined. In the great majority of projects in the modern world, it is extremely difficult, if not impossible, to determine with any exactitude the value of future profits. It is highly important that decision makers have the elements necessary for verifying when these benefits are estimated within a spectrum of values. The classic approach in project analysis begins with already inadequate supposition that benefits are previously determined with exactitude, which does not occur in most cases. Therefore, the utility of this approach finds its limit when values are randomly
distributed upon a spectrum of values. This article proposes to reveal and present a methodology for project analysis in which flows of benefits are estimated within a spectrum of values.

Data do recebimento do artigo: 01/03/2005
Data do aceite de publicação: 20/03/2005